Alexander Quaas Berger
Director del Programa Doctorado en Matemática
Línea de Investigación:
Análisis No-Lineal y de Ecuaciones Diferenciales ParcialesInformación:
- Grado Académico: Ph.D Universidad de Chile - Université de Paris-Dauphine (Francia)
- Título Profesional: Ingeniero Civil Matemático, Universidad de Chile
- Campus: Casa Central
- Horario de consulta: Lunes y Miércoles de 11:00 a 12:00 hrs.
- Email: alexander.quaas@usm.cl
- Sitio Web
Publicaciones Recientes
Núm. | Autores | Artículo | Revista | Año |
---|---|---|---|---|
81 | L. Del Pezzo, A. Quaas, J. Rossi |
Fractional convexity | 2022 | |
80 | H. Chen, A. Quaas, F. Zhou |
On nonhomogeneous elliptic equations with the Hardy—Leray potentials | 2021 | |
79 | A. Quaas, A, Rodriguez-Paredes, G. Barles. |
Large-time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN | Communications in Partial Differential Equations, 46, (3), 547-572, (2021). |
2021 |
78 | B. Barrios, A. Quaas |
The sharp exponent in the study of the nonlocal Hénon equation in RN: a Liouville theorem and an existence result | Calculus of Variations and Partial Differential Equations volume 59, Article number: 114 (2020) |
2020 |
77 | A. Quaas, A. Salort, A. Xia |
Principal eigenvalues of fully nonlinear integro-differential elliptic equations with a drift term | ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 36, 19 pp |
2020 |
76 | L. M. Del Pezzo, A. Quaas |
Spectrum of the fractional -Laplacian in and decay estimate for positive solutions of a Schrödinger equation | 2020 | |
75 | J. García-Melián, L. Iturriaga, A. Quaas |
Liouville theorems for radial solutions of semilinear elliptic equations | Complex Variables and Elliptic Equations; Vol 64(6), pp. 933-949; 2019. |
2019 |
74 | G. Dávila, A. Quaas, E. Topp |
An ODE approach for fractional Dirichlet problems with gradient nonlinearity | Mathematische Zeitschrift; Vol. 291(1–2), pp. 85–111; Feb. 2019. |
2019 |
73 | B. Barrios, J. García-Melián, A. Quaas |
Periodic solutions for the one-dimensional fractional Laplacian | 2019 | |
72 | B. Barrios, J. García-Melián, A. Quaas |
A note on the monotonicity of solutions for fractional equations in half-spaces | 2019 | |
71 | M. Á. Burgos-Pérez, J. García-Melián, A. Quaas |
Some nonexistence theorems for semilinear fourth-order equations | Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 3, 761–779 |
2019 |
70 | J. García-Melián, A. Quaas, B. Sirakov |
Liouville theorems for nonlinear elliptic equations in half-spaces | Journal d’Analyse Mathématique; Vol. 139, pp. 559–583; Nov. 2019. |
2019 |
69 | G. Dávila, A. Quaas, E. Topp |
Existence, nonexistence and multiplicity results for nonlocal Dirichlet problems | Journal of Differential Equations; Vol. 266(9), pp. 5971-5997; Apr. 2019. |
2019 |
68 | A. Quaas, A. Rodríguez |
Loss of boundary conditions for fully nonlinear parabolic equations with superquadratic gradient terms | Journal of Differential Equations, Vol. 264(4), pp. 2897-2935, Feb. 2018. |
2018 |
67 | B. Barrios, L. Del Pezzo, J. García-Melián, A. Quaas |
A priori bounds and existence of solutions for some nonlocal elliptic problems | Revista Matemática Iberoamericana, Vol. 34(1), pp. 195-220, Feb. 2018. |
2018 |
66 | C. Huyuan, A. Quaas |
Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results | Journal of the London Mathematical Society, Vol. 97(2), pp. 196-221, Apr. 2018. |
2018 |
65 | A. Quaas, A. Xia |
Existence results of positive solutions for nonlinear cooperative elliptic systems involving fractional Laplacian | Communications in Contemporary Mathematics, Vol. 20(3), art. 1750032, May 2018. |
2018 |
64 | A. Quaas, A. Rodríguez |
Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation | Discrete & Continuous Dynamical Systems – A, Vol. 38(10), pp 5221-5243, Oct. 2018. |
2018 |
63 | B. Barrios, L. Del Pezzo, J. García-Melián, A. Quaas |
Symmetry results in the half-space for a semi-linear fractional Laplace equation | Annali di Matematica Pura ed Applicata, Vol. 197(5), pp 1385-1416, Oct. 2018. |
2018 |
62 | A. Quaas, E. Topp |
Existence and uniqueness of large solutions for a class of non-uniformly elliptic semilinear equations | Journal d’Analyse Mathématique; Vol. 136(1), pp. 341–355; Oct. 2018. |
2018 |
61 | J. García, B. Barrios, L.M. Del Pezzo, A. Quaas |
Monotonicity of solutions for some nonlocal elliptic problems in half-spaces | Calculus of Variations and Partial Differential Equations; Vol. 56, art. 39; Apr. 2017 |
2017 |
60 | L.M. Del Pezzo, A. Quaas |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian | Journal of Fixed Point Theory and Applications; Vol. 19(1), pp. 939-958; Mar. 2017 |
2017 |
59 | A. Quaas O. González-Melendez |
On critical exponents for Lane-Emden-Fowler-type equations with a singular extremal operator | Annali di Matematica Pura ed Applicata; Vol. 196(2), pp. 599-615; Apr. 2017 |
2017 |
58 | L.M. Del Pezzo, B. Barrios, J. García, A. Quaas |
A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions | Discrete and Continuous Dynamical Systems – Series A; Vol. 37(11), pp. 5731-5746; Nov. 2017 |
2017 |
57 | L.M. Del Pezzo, A. Quaas |
A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian | Journal of Differential Equations; Vol. 263(1), pp. 765-778; Jul. 2017 |
2017 |
56 | G. Dávila, A. Quaas, E. Topp |
Continuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms | Mathematische Annalen; Vol. 369(3-4), pp. 1211-1236; Dec. 2017 |
2017 |
55 | Gonzalo Dávila, Alexander Quaas, Erwin Topp |
Continuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms | 2017 | |
54 | A. Quaas, A. Xia |
Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in involving fractional Laplacian | Discrete and Continuous Dynamical Systems – Series A; Vol. 37(5), pp. 2653-2668; May 2017 |
2017 |
53 | A. Quaas, A. Xia |
A Liouville type theorem for Lane-Emden systems involving the fractional Laplacian | 2016 | |
52 | M.A. Burgos, J. García, A. Quaas |
Classification of Supersolutions and Liouville Theorems for some Nonlinear Elliptic Problems | Discrete and Continuous Dynamical Systems; Vol. 36(9), pp. 4703-4721; Sep. 2016 |
2016 |
51 | B. Sirakov, J. García, A. Quaas |
Elliptic equations with absorption in a half-space | Bulletin of the Brazilian Mathematical Society; Vol. 47(3), pp. 811-821; Sep. 2016 |
2016 |
50 | L. del Pezzo, A. Quaas |
Global Bifurcation for Fractional p-Laplacian and an Application | Zeitschrift für Analysis und Ihre Anwendungen; Vol. 35(4), pp. 411-447; 2016 |
2016 |
49 | A. Quaas, A. Xia |
Multiple positive solutions for nonlinear critical fractional elliptic equations involving sign-changing weight functions | Zeitschrift für angewandte Mathematik und Physik; Vol. 67(3), art. 40; Jun. 2016 |
2016 |
48 | J. García, S. Alarcón, M. Burgos, A. Quaas |
Nonexistence results for elliptic equations woth gradient terms | Journal of Differential Equations; Vol. 260(1), pp. 758-780; Jan. 5, 2016. |
2016 |
47 | S. Alarcón, J. García, A. Quaas |
Optimal Liouville theorems for supersolutions of elliptic equations with the Laplacian | Annali della Scuola Normale Superiore di Pisa-Classe di Scienze; Vol. XVI(1), pp. 129-158; 2016 |
2016 |
46 | A. Quaas, H. Chen, P. Felmer |
Large solutions to elliptic equations involving fractional Laplacian | Annales de L´Institut Henri Poincaré: Analyse Non Linéaire; Vol. 32(6), pp. 1199-1228; Nov-Dic. 2015 |
2015 |
45 | H. Chen, P. Felmer, A. Quaas |
Self-Generated Interior Blow-Up Solutions of Fractional Elliptic Equation with Absorption | Differential and Integral Equations; Vol. 28(9-10), pp. 839-860; Sept-Oct. 2015 |
2015 |
44 | A. Quaas, A. Xia |
Liouville type theorems for nonlinear elliptic equations and systems involving fractional Laplacian in the half space | Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 641–659 |
2015 |
43 | S. Alarcón, J. García-Mellán, A. Quaas |
Existence and non-existence of solutions to elliptic equations with a general convection term | 2014 | |
42 | S. Alarcón, J. García-Melián, A. Quaas |
Liouville Type Theorems for Elliptic Equations with Gradient Terms | 2013 | |
41 | S. Alarcón, J. García-Melián, A. Quaas |
Nonexistence of positive supersolutions to some nonlinear elliptic problems | Journal de Mathématiques Pures et Appliquées Volume 99, Issue 5, May 2013, Pages 618-634 |
2013 |
40 | S. Alarcón, A. Quaas |
Large viscosity solutions for some fully nonlinear equations | NoDEA Nonlinear Differential Equations Appl. 20 (2013) 1453-1472 |
2013 |
39 | P. Felmer, A. Quaas, B. Sirakov |
Solvability of nonlinear elliptic equations with gradient terms | 2013 | |
38 | S. Alarcón, L. Iturriaga, A. Quaas |
Existence and multiplicity results for Pucci’s operators involving nonlinearities with zeros | 2012 | |
37 | Salomón Alarcón, Jorge García-Melián, Alexander Quaas |
Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity | Journal d’Analyse Mathématique October 2012, Volume 118, Issue 1, pp 83–104 |
2012 |
36 | P. Felmer, A. Quaas, J. Tan |
Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian | Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237–1262 |
2012 |
35 | Salomón Alarcón, Jorge García-Melián, Alexander Quaas |
Keller–Osserman type conditions for some elliptic problems with gradient terms | Journal of Differential Equations Volume 252, Issue 2, 15 January 2012, Pages 886-914 |
2012 |
34 | P. Felmer, A. Quaas, B. Sirakov |
Existence and regularity results for fully nonlinear equations with singularities | 2012 | |
33 | P. Felmer, A. Quaas |
Fundamental solutions and Liouville type theorems for nonlinear integral operators | 2011 | |
32 | Alejandro Allendes, Alexander Quaas |
Multiplicity results for extremal operators trough bifurcation | Discrete and Continuous Dynamical Systems – Series A, Vol. 29, No. 1, pp: 51–65, 2011 |
2011 |
31 | P. Felmer, A. Quaas
|
Fundamental solutions for a class of Isaacs integral operators | 2011 | |
30 | R. Meneses, A. Quaas |
Fujita type exponent for fully nonlinear parabolic equations and existence results | 2011 | |
29 | Dávila, Gonzalo; Felmer, Patricio; Quaas, Alexander |
Harnack inequality for singular fully nonlinear operators and some existence results | Calc. Var. Partial Differential Equations 39 (2010), no. 3-4, 557–578. |
2010 |
28 | M. J. Esteban, P. Felmer, A. Quaas |
Eigenvalues for radially symmetric fully nonlinear operators | Comm. Partial Differential Equations 35 (2010), no. 9, 1716–1737 |
2010 |
27 | P. Felmer, A. Quaas, B. Sirakov |
Resonance phenomena for second-order stochastic control equations | 2010 | |
26 | P. Felmer, A. Quaas, B. Sirakov |
Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations | 2010 | |
25 | P. Felmer, A. Quaas, J. Tan |
Geometry of phase plane and radial solutions for nonlinear elliptic equations with extremal operators. | 2010 | |
24 | M. J. Esteban, P. Felmer, A. Quaas |
Superlinear elliptic equation for fully nonlinear operators without growth restrictions for the data | 2010 | |
23 | S. Alarcón, A. Quaas |
Large number of fast decay ground states to Matukuma-type equations | Journal of Differential Equations Volume 248, Issue 4, 15 February 2010, Pages 866-892 |
2010 |
22 | P. Felmer, M. Montenegro, A. Quaas |
A note on the strong maximum principle and the compact support principle | 2009 | |
21 | Dávila, Gonzalo; Felmer, Patricio; Quaas, Alexander |
Alexandroff-Bakelman-Pucci estimate for singular or degenerate fully nonlinear elliptic equations | C. R. Math. Acad. Sci. Paris 347 (2009), no. 19-20, 1165–1168 |
2009 |
20 | P. Felmer, A. Quaas, M. Tang, J. Yu |
Random dynamics of gene transcription activation in single cells | 2009 | |
19 | P. Felmer, A. Quaas |
Fundamental solutions and two properties of elliptic maximal and minimal operators | 2009 | |
18 | P. Felmer, A. Quaas, M. Tang |
On the complex structure of positive solutions to Matukuma-type equations | Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 3, 869–887 |
2009 |
17 | A. Quaas, B. Sirakov |
Existence and non-existence results for fully nonlinear elliptic systems | 2009 | |
16 | P. Felmer, A. Quaas |
Around viscosity solutions for a class of superlinear second order elliptic differential equations. | On the notions of solution to nonlinear elliptic problems: results and developments, 205–228, Quad. Mat., 23, Dept. Math., Seconda Univ. Napoli, Caserta, 2008 |
2008 |
15 | A. Quaas, B. Sirakov |
Solvability of monotone systems of fully nonlinear elliptic PDE’s | 2008 | |
14 | P. Felmer, A. Quaas, M. Tang, J. Yu |
Monotonicity properties for ground states of the scalar field equation | Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 1, 105–119 |
2008 |
13 | M.J. Esteban, P. Felmer, A. Quaas |
Large critical exponents for some second order uniformly elliptic operators | Comm. Partial Differential Equations 32 (2007), no. 4-6, 543–556 |
2007 |
12 | A. Quaas, B. Sirakov |
Existence results for nonproper elliptic equations involving the Pucci operator | Comm. Partial Differential Equations 31 (2006), no. 7-9, 987–1003 |
2006 |
11 | P. Felmer, A. Quaas, M. Tang |
On uniqueness for nonlinear elliptic equation involving the Pucci’s extremal operator | 2006 | |
10 | P. Felmer, A. Quaas |
Critical exponents for uniformly elliptic extremal operators | 2006 | |
9 | A. Quaas, B. Sirakov |
On the principal eigenvalues and the Dirichlet problem for fully nonlinear operators | 2006 | |
8 | P. Felmer, A. Quaas |
Some recent results on equations involving the Pucci’s extremal operators | 2006 | |
7 | J. Busca, M. J. Esteban, A. Quaas |
Nonlinear eigenvalues and bifurcation problems for Pucci’s operators | Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 2, 187–206 |
2005 |
6 | A. Quaas |
Existence of a positive solution to a “semilinear” equation involving Pucci’s operator in a convex domain | Differential Integral Equations 17 (2004), no. 5-6, 481–494 |
2004 |
5 | P. Felmer, A. Quaas |
Positive radial solutions to a `semilinear’ equation involving the Pucci’s operator | 2004 | |
4 | P. Felmer, A. Quaas |
On critical exponents for the Pucci’s extremal operators | Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 5, 843–865 |
2003 |
3 | P. Felmer, A. Quaas |
Critical exponents for the Pucci’s extremal operators | 2002 | |
2 | J. Busca, A. Quaas |
Qualitative properties for semilinear elliptic systems with non-Lipschitz nonlinearity | Nonlinear Anal. 50 (2002), no. 3, Ser. A: Theory Methods, 299–312 |
2002 |
1 | P. Felmer, A. Quaas |
On the strong maximum principle for quasilinear elliptic equations and systems | Adv. Differential Equations 7 (2002), no. 1, 25–46 |
2002 |